
PVFS2 and Parallel I/O on BG/L

Rob Ross
Mathematics and Computer Science Division

Argonne National Laboratory



Special acknowledgements

λ Rob Latham – did most of the work to get PVFS2 up
and running

λ Susan Coghlan – provided all the access we
needed, made everything easy for us, and clicked
the mouse at the right time (even from SLC!)

λ Kazutomo Yoshii – figured out how to get things
built for the IO nodes at Argonne

λ LLNL group (Robin, Ira, others) – provided us with
a great start for building IO node kernels

λ IBM – provided source to key components and
insight into system components that made this
possible



Outline

λ PVFS2 introduction and background

- What it is, who it is, and why it’s interesting for BG/L

λ Base functionality for PVFS2 on BG/L

- What is working, preliminary performance numbers

λ Beyond the baseline

- Pursuing higher I/O performance

- Research in MPI-IO

λ Wrap up



The PVFS2 Parallel File System

λ Parallel file system

- Distributed data and metadata

- Tuned for performance and concurrency

λ Production ready

- In use at ANL, OSC, Univ. of Utah CHPC, others

λ Open source and open development

- LGPL license on all but kernel module, GPL on kernel module

- Current CVS is anonymously accessible

- Mailing lists where developers can track and initiate discussions

λ Community research vehicle

- Heterogeneous system support

- Predominantly user-space code

- Rapid porting via network and storage abstractions

- Many labs and universities extend or modify PVFS2 to explore new ideas



Who is PVFS2?

• PVFS2 is an open, collaborative effort
• Core development

– Argonne National Laboratory
• Ross, Latham, Gropp, Thakur
• Supported by DOE Office of Science

– Clemson University
• Ligon, Settlemyer

– Ohio Supercomputer Center
• Wyckoff, Baer

• Collaborators
– Northwestern University

• Choudhary, Ching
– Ohio State University

• Panda, Yu
– Penn State University

• Sivasubramaniam, Kandemir, Vilayannur



PVFS2 at OSC

λ 506 total clients

λ 116.8 TByte file system

...

GigE SwitchIB Switch

...

... ...

112 dual P4 nodes 144 dual P4 nodes250 IA64 nodes

16 dual P4 servers
- 7.3 TB each
- multi-home

IB

IB
GigE

GigEFastE



OSC cluster performance

λ Data sizes are per-client
λ Achieving ~2.8GB/sec write, ~3.8GB/sec read

- No network optimization (memory registration or
pipelining)



View of I/O on BG/L

λ Storage nodes
- Local access to disks
- GigE connections to login

and IO nodes
λ Login nodes

- Interactive machines
- Place where data staging will

occur
λ IO nodes

- Aggregators for compute node I/O
- 1:8 to 1:64 ratio of IO nodes to compute nodes

- Tree connection to compute nodes
λ Compute nodes

- Source/sink of runtime I/O

...

...

...

Login Nodes Storage Nodes

Compute Nodes

IO Nodes



Why put PVFS2 on BG/L?

λ It’s fun 

λ It provides another data point for I/O performance

λ Most importantly, PVFS2 addresses three key
scalability problems for parallel file systems:

- I/O performance (especially for noncontiguous data)

- Metadata performance (in particular open/close)

- Failure tolerance

λ Because of these advantages, we believe that
PVFS2 has the best chance of extracting the
highest possible I/O performance from BG/L



Scaling effective I/O rates

λ POSIX I/O APIs aren’t descriptive enough
- Don’t allow us to generally describe noncontiguous regions in both

memory and file

λ POSIX consistency semantics are too great a burden
- Require too much additional communication and synchronization,

not really required by many HPC applications

- Will never reach peak I/O with POSIX at scale, only penalize the
stubborn apps

- Use more relaxed semantics at the FS layer as the default, build on
top of that

Tile Reader Benchmark I/O Read

0

5

10

15

20

25

30

35

40

POSIX List I/O Structured I/O

B
a

n
d

w
id

th
 (

M
B

/
s
e

c
)



0

100

200

300

400

500

600

700

1 4 8

1
6

2
5

5
0

7
5

1
0
0

1
2
8

Number of Processes

A
v
g
. 

C
re

a
te

 T
im

e
 (

m
s)

GPFS

Lustre

PVFS2

Scaling metadata operations

λ POSIX API hinders scalability here too

- POSIX open/close access model
imposes constraints on how we
implement MPI-IO operations like
MPI_File_open

- Similar issues with fsync and other
operations

...

...

POSIX file model forces all processes
to open a file, causing system call
storm.

...

...

Handle-based model uses a single FS
lookup followed by broadcast of
handle (implemented in
ROMIO/PVFS2).

MPI File Create Performance (small is good)



Tolerating client failures

λ Client failures are likely to be common with high node counts

- 99.99% up indicates ~6 nodes down at any time on a 64K
node system

- 99.9% up indicates ~65 down at any time on same

λ Unlike other options, PVFS2 uses a stateless I/O model

- No locking system to add complications

- No other shared data stored necessary for correct
operation (no tracking of open files, etc.)

λ Client failures can be ignored completely by servers and other
clients

- As opposed to locking systems, where locks and dirty
blocks must be recovered!

λ Server restarts are easily handled as well



First steps in running PVFS2 on BG/L

λ Goal: Enable data staging and runtime I/O to a PVFS2
file system
- Run PVFS2 servers on storage nodes

- dual Xeon nodes running SLES Linux and 2.6.5 kernel

- Mount PVFS2 file system on login nodes
- PowerPC 970 nodes running SLES Linux and 2.6.5 kernel

- Mount PVFS2 file system on IO nodes
- BG/L PowerPC nodes running 2.4.19 kernel (no longer MontaVista)

λ This only took two weeks to accomplish!
- Mostly learning/creating build environment
- Minimal patching to PVFS2 (all in CVS)
- 12 PVFS2 servers providing a single coherent file system

(Assuming 900mbit/sec network to each, peak of ~1.3GB/sec raw BW)



Write performance (the bad news)

λ Simple pattern:
- Single file
- Independent MPI-IO
- One big access each

λ We have more work to do here!

λ ciod is breaking accesses
into 95520 byte blocks
- Understand why better now

(Mike’s talk)
- Try tuning I/O message size

- What’s the variable?

- Check TCP buffer sizes
and turn on jumbo frames (Chris’s talk)

- Why does strace’ing the ciod kill our machine sometimes?
- “Happy SuperComputing!” to you too 



Read performance (the good news)

λ Peak of 600MB/sec (44% of raw BW, also no tuning)
- This is with those tiny blocks…



Beyond base functionality

λ Our research indicates that the POSIX interface limits I/O scalability

- Noncontiguous read and write performance

- Open/close problems

λ PVFS2 improvements cannot be seen through the VFS interface

- BG/L has already broken POSIX, so on the right path…

- We’re still going through the VFS

- The ciod is using POSIX calls

λ To obtain the highest possible performance we must
circumvent (or change!) the VFS

λ Two options:

- Direct compute node to storage server communication

- Retool communication between compute and IO nodes and
mechanism IO node uses to access file system



Direct PVFS2 access from compute nodes

λ Idea: Use PVFS2 client library directly on top of socket
call forwarding to bypass IO node mount point

λ BGL PowerPC nodes

- Special, proprietary kernel

- Not all system calls are forwarded

λ PVFS2 client code will (now) build for
compute nodes, but

- poll() and select() aren’t implemented,
so we can’t run

λ Interesting experiment, but not ideal
solution…

TCP Bandwidth over Tree
(modified NetPIPE)



Changing the I/O language

λ Really what we’d like to do is change how
compute processes talk to the file system
- Ideas prototyped in PVFS2 already
- Allow for efficient noncontiguous I/O
- Eliminate open() and close() scalability issues
- More efficiently leverage the tree, IO node, and GigE

λ This means changing how compute processes
communicate with the IO node
- Replace or augment existing ciod functionality
- Map new language to PVFS2, GPFS, Lustre operations

- These changes can benefit any underlying file system



I/O research in BG/L

λ Plan: Experiment with new MPI-IO algorithms

- Control of access mapping to IO nodes

- Caching of data at IO nodes (to what extent possible)

- New GPFS, Lustre, PVFS2 optimizations

λ To do this, we must be able to rebuild ROMIO and
link to IBM MPI

λ Next Tasks:

- ANL ensures that ROMIO builds cleanly against IBM MPI

- IBM provides MPI without ROMIO



Wrap up

λ In a couple of weeks we were able to get PVFS2
running on BG/L

- Open source operating systems played a key role

- Very positive experience!

λ IBM developers have been very helpful

- Will aid greatly in MPI-IO research and tuning for BG/L

λ This is turning into an ideal platform for testing and
deployment of next-generation I/O systems!

λ High level libraries will follow as well
λ We could use just a little more source… 



Additional information on PVFS2

λ PVFS2 web site: http://www.pvfs.org/pvfs2
- Documentation, mailing list archives, and

downloads
λ PVFS2 mailing lists (see web site)

- Separate users and developers lists
- Please use these for general questions and

discussion!
λ Email

- Rob Ross <rross@mcs.anl.gov>
- Rob Latham <robl@mcs.anl.gov>


